\(\int (d+e x)^3 \sqrt {a d e+(c d^2+a e^2) x+c d e x^2} \, dx\) [1908]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [F(-2)]
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 37, antiderivative size = 328 \[ \int (d+e x)^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx=\frac {7 \left (c d^2-a e^2\right )^3 \left (c d^2+a e^2+2 c d e x\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{128 c^4 d^4 e}+\frac {7 \left (c d^2-a e^2\right )^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{48 c^3 d^3}+\frac {7 \left (c d^2-a e^2\right ) (d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{40 c^2 d^2}+\frac {(d+e x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{5 c d}-\frac {7 \left (c d^2-a e^2\right )^5 \text {arctanh}\left (\frac {c d^2+a e^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{256 c^{9/2} d^{9/2} e^{3/2}} \]

[Out]

7/48*(-a*e^2+c*d^2)^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/c^3/d^3+7/40*(-a*e^2+c*d^2)*(e*x+d)*(a*d*e+(a*e^
2+c*d^2)*x+c*d*e*x^2)^(3/2)/c^2/d^2+1/5*(e*x+d)^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/c/d-7/256*(-a*e^2+c*
d^2)^5*arctanh(1/2*(2*c*d*e*x+a*e^2+c*d^2)/c^(1/2)/d^(1/2)/e^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/c^
(9/2)/d^(9/2)/e^(3/2)+7/128*(-a*e^2+c*d^2)^3*(2*c*d*e*x+a*e^2+c*d^2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/c
^4/d^4/e

Rubi [A] (verified)

Time = 0.19 (sec) , antiderivative size = 328, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.135, Rules used = {684, 654, 626, 635, 212} \[ \int (d+e x)^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx=-\frac {7 \left (c d^2-a e^2\right )^5 \text {arctanh}\left (\frac {a e^2+c d^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{256 c^{9/2} d^{9/2} e^{3/2}}+\frac {7 \left (c d^2-a e^2\right )^3 \left (a e^2+c d^2+2 c d e x\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{128 c^4 d^4 e}+\frac {7 \left (c d^2-a e^2\right )^2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{48 c^3 d^3}+\frac {7 (d+e x) \left (c d^2-a e^2\right ) \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{40 c^2 d^2}+\frac {(d+e x)^2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{5 c d} \]

[In]

Int[(d + e*x)^3*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2],x]

[Out]

(7*(c*d^2 - a*e^2)^3*(c*d^2 + a*e^2 + 2*c*d*e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(128*c^4*d^4*e)
+ (7*(c*d^2 - a*e^2)^2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(48*c^3*d^3) + (7*(c*d^2 - a*e^2)*(d + e
*x)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(40*c^2*d^2) + ((d + e*x)^2*(a*d*e + (c*d^2 + a*e^2)*x + c*
d*e*x^2)^(3/2))/(5*c*d) - (7*(c*d^2 - a*e^2)^5*ArcTanh[(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]*
Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(256*c^(9/2)*d^(9/2)*e^(3/2))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 626

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(b + 2*c*x)*((a + b*x + c*x^2)^p/(2*c*(2*p + 1
))), x] - Dist[p*((b^2 - 4*a*c)/(2*c*(2*p + 1))), Int[(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c}, x]
 && NeQ[b^2 - 4*a*c, 0] && GtQ[p, 0] && IntegerQ[4*p]

Rule 635

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 654

Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*((a + b*x + c*x^2)^(p +
 1)/(2*c*(p + 1))), x] + Dist[(2*c*d - b*e)/(2*c), Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}
, x] && NeQ[2*c*d - b*e, 0] && NeQ[p, -1]

Rule 684

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^(m - 1)*
((a + b*x + c*x^2)^(p + 1)/(c*(m + 2*p + 1))), x] + Dist[(m + p)*((2*c*d - b*e)/(c*(m + 2*p + 1))), Int[(d + e
*x)^(m - 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 -
b*d*e + a*e^2, 0] && GtQ[m, 1] && NeQ[m + 2*p + 1, 0] && IntegerQ[2*p]

Rubi steps \begin{align*} \text {integral}& = \frac {(d+e x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{5 c d}+\frac {\left (7 \left (d^2-\frac {a e^2}{c}\right )\right ) \int (d+e x)^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx}{10 d} \\ & = \frac {7 \left (c d^2-a e^2\right ) (d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{40 c^2 d^2}+\frac {(d+e x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{5 c d}+\frac {\left (7 \left (d^2-\frac {a e^2}{c}\right )^2\right ) \int (d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx}{16 d^2} \\ & = \frac {7 \left (c d^2-a e^2\right )^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{48 c^3 d^3}+\frac {7 \left (c d^2-a e^2\right ) (d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{40 c^2 d^2}+\frac {(d+e x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{5 c d}+\frac {\left (7 \left (d^2-\frac {a e^2}{c}\right )^3\right ) \int \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx}{32 d^3} \\ & = \frac {7 \left (c d^2-a e^2\right )^3 \left (c d^2+a e^2+2 c d e x\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{128 c^4 d^4 e}+\frac {7 \left (c d^2-a e^2\right )^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{48 c^3 d^3}+\frac {7 \left (c d^2-a e^2\right ) (d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{40 c^2 d^2}+\frac {(d+e x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{5 c d}-\frac {\left (7 \left (c d^2-a e^2\right )^5\right ) \int \frac {1}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{256 c^4 d^4 e} \\ & = \frac {7 \left (c d^2-a e^2\right )^3 \left (c d^2+a e^2+2 c d e x\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{128 c^4 d^4 e}+\frac {7 \left (c d^2-a e^2\right )^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{48 c^3 d^3}+\frac {7 \left (c d^2-a e^2\right ) (d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{40 c^2 d^2}+\frac {(d+e x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{5 c d}-\frac {\left (7 \left (c d^2-a e^2\right )^5\right ) \text {Subst}\left (\int \frac {1}{4 c d e-x^2} \, dx,x,\frac {c d^2+a e^2+2 c d e x}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{128 c^4 d^4 e} \\ & = \frac {7 \left (c d^2-a e^2\right )^3 \left (c d^2+a e^2+2 c d e x\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{128 c^4 d^4 e}+\frac {7 \left (c d^2-a e^2\right )^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{48 c^3 d^3}+\frac {7 \left (c d^2-a e^2\right ) (d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{40 c^2 d^2}+\frac {(d+e x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{5 c d}-\frac {7 \left (c d^2-a e^2\right )^5 \tanh ^{-1}\left (\frac {c d^2+a e^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{256 c^{9/2} d^{9/2} e^{3/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.59 (sec) , antiderivative size = 278, normalized size of antiderivative = 0.85 \[ \int (d+e x)^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx=\frac {\sqrt {(a e+c d x) (d+e x)} \left (\sqrt {c} \sqrt {d} \sqrt {e} \left (-105 a^4 e^8+70 a^3 c d e^6 (7 d+e x)-14 a^2 c^2 d^2 e^4 \left (64 d^2+23 d e x+4 e^2 x^2\right )+2 a c^3 d^3 e^2 \left (395 d^3+289 d^2 e x+128 d e^2 x^2+24 e^3 x^3\right )+c^4 d^4 \left (105 d^4+1210 d^3 e x+2104 d^2 e^2 x^2+1488 d e^3 x^3+384 e^4 x^4\right )\right )-\frac {105 \left (c d^2-a e^2\right )^5 \text {arctanh}\left (\frac {\sqrt {c} \sqrt {d} \sqrt {d+e x}}{\sqrt {e} \sqrt {a e+c d x}}\right )}{\sqrt {a e+c d x} \sqrt {d+e x}}\right )}{1920 c^{9/2} d^{9/2} e^{3/2}} \]

[In]

Integrate[(d + e*x)^3*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2],x]

[Out]

(Sqrt[(a*e + c*d*x)*(d + e*x)]*(Sqrt[c]*Sqrt[d]*Sqrt[e]*(-105*a^4*e^8 + 70*a^3*c*d*e^6*(7*d + e*x) - 14*a^2*c^
2*d^2*e^4*(64*d^2 + 23*d*e*x + 4*e^2*x^2) + 2*a*c^3*d^3*e^2*(395*d^3 + 289*d^2*e*x + 128*d*e^2*x^2 + 24*e^3*x^
3) + c^4*d^4*(105*d^4 + 1210*d^3*e*x + 2104*d^2*e^2*x^2 + 1488*d*e^3*x^3 + 384*e^4*x^4)) - (105*(c*d^2 - a*e^2
)^5*ArcTanh[(Sqrt[c]*Sqrt[d]*Sqrt[d + e*x])/(Sqrt[e]*Sqrt[a*e + c*d*x])])/(Sqrt[a*e + c*d*x]*Sqrt[d + e*x])))/
(1920*c^(9/2)*d^(9/2)*e^(3/2))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1542\) vs. \(2(294)=588\).

Time = 2.69 (sec) , antiderivative size = 1543, normalized size of antiderivative = 4.70

method result size
default \(\text {Expression too large to display}\) \(1543\)

[In]

int((e*x+d)^3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

d^3*(1/4*(2*c*d*e*x+a*e^2+c*d^2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/c/d/e+1/8*(4*a*c*d^2*e^2-(a*e^2+c*d^2
)^2)/c/d/e*ln((1/2*e^2*a+1/2*c*d^2+x*c*d*e)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/
2))+e^3*(1/5*x^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/c/d/e-7/10*(a*e^2+c*d^2)/c/d/e*(1/4*x*(a*d*e+(a*e^2+c
*d^2)*x+c*d*e*x^2)^(3/2)/c/d/e-5/8*(a*e^2+c*d^2)/c/d/e*(1/3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/c/d/e-1/2*
(a*e^2+c*d^2)/c/d/e*(1/4*(2*c*d*e*x+a*e^2+c*d^2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/c/d/e+1/8*(4*a*c*d^2*
e^2-(a*e^2+c*d^2)^2)/c/d/e*ln((1/2*e^2*a+1/2*c*d^2+x*c*d*e)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1
/2))/(c*d*e)^(1/2)))-1/4*a/c*(1/4*(2*c*d*e*x+a*e^2+c*d^2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/c/d/e+1/8*(4
*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/c/d/e*ln((1/2*e^2*a+1/2*c*d^2+x*c*d*e)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*
e*x^2)^(1/2))/(c*d*e)^(1/2)))-2/5*a/c*(1/3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/c/d/e-1/2*(a*e^2+c*d^2)/c/d
/e*(1/4*(2*c*d*e*x+a*e^2+c*d^2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/c/d/e+1/8*(4*a*c*d^2*e^2-(a*e^2+c*d^2)
^2)/c/d/e*ln((1/2*e^2*a+1/2*c*d^2+x*c*d*e)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2
))))+3*d*e^2*(1/4*x*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/c/d/e-5/8*(a*e^2+c*d^2)/c/d/e*(1/3*(a*d*e+(a*e^2+c
*d^2)*x+c*d*e*x^2)^(3/2)/c/d/e-1/2*(a*e^2+c*d^2)/c/d/e*(1/4*(2*c*d*e*x+a*e^2+c*d^2)*(a*d*e+(a*e^2+c*d^2)*x+c*d
*e*x^2)^(1/2)/c/d/e+1/8*(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/c/d/e*ln((1/2*e^2*a+1/2*c*d^2+x*c*d*e)/(c*d*e)^(1/2)+(
a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2)))-1/4*a/c*(1/4*(2*c*d*e*x+a*e^2+c*d^2)*(a*d*e+(a*e^2+c*d
^2)*x+c*d*e*x^2)^(1/2)/c/d/e+1/8*(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/c/d/e*ln((1/2*e^2*a+1/2*c*d^2+x*c*d*e)/(c*d*e
)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2)))+3*d^2*e*(1/3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2
)^(3/2)/c/d/e-1/2*(a*e^2+c*d^2)/c/d/e*(1/4*(2*c*d*e*x+a*e^2+c*d^2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/c/d
/e+1/8*(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/c/d/e*ln((1/2*e^2*a+1/2*c*d^2+x*c*d*e)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^
2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2)))

Fricas [A] (verification not implemented)

none

Time = 0.46 (sec) , antiderivative size = 844, normalized size of antiderivative = 2.57 \[ \int (d+e x)^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx=\left [\frac {105 \, {\left (c^{5} d^{10} - 5 \, a c^{4} d^{8} e^{2} + 10 \, a^{2} c^{3} d^{6} e^{4} - 10 \, a^{3} c^{2} d^{4} e^{6} + 5 \, a^{4} c d^{2} e^{8} - a^{5} e^{10}\right )} \sqrt {c d e} \log \left (8 \, c^{2} d^{2} e^{2} x^{2} + c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4} - 4 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt {c d e} + 8 \, {\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right ) + 4 \, {\left (384 \, c^{5} d^{5} e^{5} x^{4} + 105 \, c^{5} d^{9} e + 790 \, a c^{4} d^{7} e^{3} - 896 \, a^{2} c^{3} d^{5} e^{5} + 490 \, a^{3} c^{2} d^{3} e^{7} - 105 \, a^{4} c d e^{9} + 48 \, {\left (31 \, c^{5} d^{6} e^{4} + a c^{4} d^{4} e^{6}\right )} x^{3} + 8 \, {\left (263 \, c^{5} d^{7} e^{3} + 32 \, a c^{4} d^{5} e^{5} - 7 \, a^{2} c^{3} d^{3} e^{7}\right )} x^{2} + 2 \, {\left (605 \, c^{5} d^{8} e^{2} + 289 \, a c^{4} d^{6} e^{4} - 161 \, a^{2} c^{3} d^{4} e^{6} + 35 \, a^{3} c^{2} d^{2} e^{8}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{7680 \, c^{5} d^{5} e^{2}}, \frac {105 \, {\left (c^{5} d^{10} - 5 \, a c^{4} d^{8} e^{2} + 10 \, a^{2} c^{3} d^{6} e^{4} - 10 \, a^{3} c^{2} d^{4} e^{6} + 5 \, a^{4} c d^{2} e^{8} - a^{5} e^{10}\right )} \sqrt {-c d e} \arctan \left (\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt {-c d e}}{2 \, {\left (c^{2} d^{2} e^{2} x^{2} + a c d^{2} e^{2} + {\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right )}}\right ) + 2 \, {\left (384 \, c^{5} d^{5} e^{5} x^{4} + 105 \, c^{5} d^{9} e + 790 \, a c^{4} d^{7} e^{3} - 896 \, a^{2} c^{3} d^{5} e^{5} + 490 \, a^{3} c^{2} d^{3} e^{7} - 105 \, a^{4} c d e^{9} + 48 \, {\left (31 \, c^{5} d^{6} e^{4} + a c^{4} d^{4} e^{6}\right )} x^{3} + 8 \, {\left (263 \, c^{5} d^{7} e^{3} + 32 \, a c^{4} d^{5} e^{5} - 7 \, a^{2} c^{3} d^{3} e^{7}\right )} x^{2} + 2 \, {\left (605 \, c^{5} d^{8} e^{2} + 289 \, a c^{4} d^{6} e^{4} - 161 \, a^{2} c^{3} d^{4} e^{6} + 35 \, a^{3} c^{2} d^{2} e^{8}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{3840 \, c^{5} d^{5} e^{2}}\right ] \]

[In]

integrate((e*x+d)^3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="fricas")

[Out]

[1/7680*(105*(c^5*d^10 - 5*a*c^4*d^8*e^2 + 10*a^2*c^3*d^6*e^4 - 10*a^3*c^2*d^4*e^6 + 5*a^4*c*d^2*e^8 - a^5*e^1
0)*sqrt(c*d*e)*log(8*c^2*d^2*e^2*x^2 + c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4 - 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 +
 a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(c*d*e) + 8*(c^2*d^3*e + a*c*d*e^3)*x) + 4*(384*c^5*d^5*e^5*x^4 + 1
05*c^5*d^9*e + 790*a*c^4*d^7*e^3 - 896*a^2*c^3*d^5*e^5 + 490*a^3*c^2*d^3*e^7 - 105*a^4*c*d*e^9 + 48*(31*c^5*d^
6*e^4 + a*c^4*d^4*e^6)*x^3 + 8*(263*c^5*d^7*e^3 + 32*a*c^4*d^5*e^5 - 7*a^2*c^3*d^3*e^7)*x^2 + 2*(605*c^5*d^8*e
^2 + 289*a*c^4*d^6*e^4 - 161*a^2*c^3*d^4*e^6 + 35*a^3*c^2*d^2*e^8)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)
*x))/(c^5*d^5*e^2), 1/3840*(105*(c^5*d^10 - 5*a*c^4*d^8*e^2 + 10*a^2*c^3*d^6*e^4 - 10*a^3*c^2*d^4*e^6 + 5*a^4*
c*d^2*e^8 - a^5*e^10)*sqrt(-c*d*e)*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 +
 a*e^2)*sqrt(-c*d*e)/(c^2*d^2*e^2*x^2 + a*c*d^2*e^2 + (c^2*d^3*e + a*c*d*e^3)*x)) + 2*(384*c^5*d^5*e^5*x^4 + 1
05*c^5*d^9*e + 790*a*c^4*d^7*e^3 - 896*a^2*c^3*d^5*e^5 + 490*a^3*c^2*d^3*e^7 - 105*a^4*c*d*e^9 + 48*(31*c^5*d^
6*e^4 + a*c^4*d^4*e^6)*x^3 + 8*(263*c^5*d^7*e^3 + 32*a*c^4*d^5*e^5 - 7*a^2*c^3*d^3*e^7)*x^2 + 2*(605*c^5*d^8*e
^2 + 289*a*c^4*d^6*e^4 - 161*a^2*c^3*d^4*e^6 + 35*a^3*c^2*d^2*e^8)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)
*x))/(c^5*d^5*e^2)]

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1646 vs. \(2 (316) = 632\).

Time = 0.99 (sec) , antiderivative size = 1646, normalized size of antiderivative = 5.02 \[ \int (d+e x)^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx=\text {Too large to display} \]

[In]

integrate((e*x+d)**3*(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)

[Out]

Piecewise((sqrt(a*d*e + c*d*e*x**2 + x*(a*e**2 + c*d**2))*(e**3*x**4/5 + x**3*(a*e**5 + 4*c*d**2*e**3 - e**3*(
9*a*e**2/2 + 9*c*d**2/2)/5)/(4*c*d*e) + x**2*(16*a*d*e**4/5 + 6*c*d**3*e**2 - (7*a*e**2/2 + 7*c*d**2/2)*(a*e**
5 + 4*c*d**2*e**3 - e**3*(9*a*e**2/2 + 9*c*d**2/2)/5)/(4*c*d*e))/(3*c*d*e) + x*(6*a*d**2*e**3 - 3*a*(a*e**5 +
4*c*d**2*e**3 - e**3*(9*a*e**2/2 + 9*c*d**2/2)/5)/(4*c) + 4*c*d**4*e - (5*a*e**2/2 + 5*c*d**2/2)*(16*a*d*e**4/
5 + 6*c*d**3*e**2 - (7*a*e**2/2 + 7*c*d**2/2)*(a*e**5 + 4*c*d**2*e**3 - e**3*(9*a*e**2/2 + 9*c*d**2/2)/5)/(4*c
*d*e))/(3*c*d*e))/(2*c*d*e) + (4*a*d**3*e**2 - 2*a*(16*a*d*e**4/5 + 6*c*d**3*e**2 - (7*a*e**2/2 + 7*c*d**2/2)*
(a*e**5 + 4*c*d**2*e**3 - e**3*(9*a*e**2/2 + 9*c*d**2/2)/5)/(4*c*d*e))/(3*c) + c*d**5 - (3*a*e**2/2 + 3*c*d**2
/2)*(6*a*d**2*e**3 - 3*a*(a*e**5 + 4*c*d**2*e**3 - e**3*(9*a*e**2/2 + 9*c*d**2/2)/5)/(4*c) + 4*c*d**4*e - (5*a
*e**2/2 + 5*c*d**2/2)*(16*a*d*e**4/5 + 6*c*d**3*e**2 - (7*a*e**2/2 + 7*c*d**2/2)*(a*e**5 + 4*c*d**2*e**3 - e**
3*(9*a*e**2/2 + 9*c*d**2/2)/5)/(4*c*d*e))/(3*c*d*e))/(2*c*d*e))/(c*d*e)) + (a*d**4*e - a*(6*a*d**2*e**3 - 3*a*
(a*e**5 + 4*c*d**2*e**3 - e**3*(9*a*e**2/2 + 9*c*d**2/2)/5)/(4*c) + 4*c*d**4*e - (5*a*e**2/2 + 5*c*d**2/2)*(16
*a*d*e**4/5 + 6*c*d**3*e**2 - (7*a*e**2/2 + 7*c*d**2/2)*(a*e**5 + 4*c*d**2*e**3 - e**3*(9*a*e**2/2 + 9*c*d**2/
2)/5)/(4*c*d*e))/(3*c*d*e))/(2*c) - (a*e**2 + c*d**2)*(4*a*d**3*e**2 - 2*a*(16*a*d*e**4/5 + 6*c*d**3*e**2 - (7
*a*e**2/2 + 7*c*d**2/2)*(a*e**5 + 4*c*d**2*e**3 - e**3*(9*a*e**2/2 + 9*c*d**2/2)/5)/(4*c*d*e))/(3*c) + c*d**5
- (3*a*e**2/2 + 3*c*d**2/2)*(6*a*d**2*e**3 - 3*a*(a*e**5 + 4*c*d**2*e**3 - e**3*(9*a*e**2/2 + 9*c*d**2/2)/5)/(
4*c) + 4*c*d**4*e - (5*a*e**2/2 + 5*c*d**2/2)*(16*a*d*e**4/5 + 6*c*d**3*e**2 - (7*a*e**2/2 + 7*c*d**2/2)*(a*e*
*5 + 4*c*d**2*e**3 - e**3*(9*a*e**2/2 + 9*c*d**2/2)/5)/(4*c*d*e))/(3*c*d*e))/(2*c*d*e))/(2*c*d*e))*Piecewise((
log(a*e**2 + c*d**2 + 2*c*d*e*x + 2*sqrt(c*d*e)*sqrt(a*d*e + c*d*e*x**2 + x*(a*e**2 + c*d**2)))/sqrt(c*d*e), N
e(a*d*e - (a*e**2 + c*d**2)**2/(4*c*d*e), 0)), ((x - (-a*e**2 - c*d**2)/(2*c*d*e))*log(x - (-a*e**2 - c*d**2)/
(2*c*d*e))/sqrt(c*d*e*(x - (-a*e**2 - c*d**2)/(2*c*d*e))**2), True)), Ne(c*d*e, 0)), (2*(c**3*d**9*(a*d*e + x*
(a*e**2 + c*d**2))**(3/2)/(3*(a**3*e**6 + 3*a**2*c*d**2*e**4 + 3*a*c**2*d**4*e**2 + c**3*d**6)) + 3*c**2*d**6*
e*(a*d*e + x*(a*e**2 + c*d**2))**(5/2)/(5*(a**3*e**6 + 3*a**2*c*d**2*e**4 + 3*a*c**2*d**4*e**2 + c**3*d**6)) +
 3*c*d**3*e**2*(a*d*e + x*(a*e**2 + c*d**2))**(7/2)/(7*(a**3*e**6 + 3*a**2*c*d**2*e**4 + 3*a*c**2*d**4*e**2 +
c**3*d**6)) + e**3*(a*d*e + x*(a*e**2 + c*d**2))**(9/2)/(9*(a**3*e**6 + 3*a**2*c*d**2*e**4 + 3*a*c**2*d**4*e**
2 + c**3*d**6)))/(a*e**2 + c*d**2), Ne(a*e**2 + c*d**2, 0)), (sqrt(a*d*e)*Piecewise((d**3*x, Eq(e, 0)), ((d +
e*x)**4/(4*e), True)), True))

Maxima [F(-2)]

Exception generated. \[ \int (d+e x)^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate((e*x+d)^3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(e>0)', see `assume?` for more
details)Is e

Giac [A] (verification not implemented)

none

Time = 0.34 (sec) , antiderivative size = 400, normalized size of antiderivative = 1.22 \[ \int (d+e x)^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx=\frac {1}{1920} \, \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e} {\left (2 \, {\left (4 \, {\left (6 \, {\left (8 \, e^{3} x + \frac {31 \, c^{4} d^{5} e^{6} + a c^{3} d^{3} e^{8}}{c^{4} d^{4} e^{4}}\right )} x + \frac {263 \, c^{4} d^{6} e^{5} + 32 \, a c^{3} d^{4} e^{7} - 7 \, a^{2} c^{2} d^{2} e^{9}}{c^{4} d^{4} e^{4}}\right )} x + \frac {605 \, c^{4} d^{7} e^{4} + 289 \, a c^{3} d^{5} e^{6} - 161 \, a^{2} c^{2} d^{3} e^{8} + 35 \, a^{3} c d e^{10}}{c^{4} d^{4} e^{4}}\right )} x + \frac {105 \, c^{4} d^{8} e^{3} + 790 \, a c^{3} d^{6} e^{5} - 896 \, a^{2} c^{2} d^{4} e^{7} + 490 \, a^{3} c d^{2} e^{9} - 105 \, a^{4} e^{11}}{c^{4} d^{4} e^{4}}\right )} + \frac {7 \, {\left (c^{5} d^{10} - 5 \, a c^{4} d^{8} e^{2} + 10 \, a^{2} c^{3} d^{6} e^{4} - 10 \, a^{3} c^{2} d^{4} e^{6} + 5 \, a^{4} c d^{2} e^{8} - a^{5} e^{10}\right )} \log \left ({\left | -c d^{2} - a e^{2} - 2 \, \sqrt {c d e} {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )} \right |}\right )}{256 \, \sqrt {c d e} c^{4} d^{4} e} \]

[In]

integrate((e*x+d)^3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="giac")

[Out]

1/1920*sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e)*(2*(4*(6*(8*e^3*x + (31*c^4*d^5*e^6 + a*c^3*d^3*e^8)/(c^4*d
^4*e^4))*x + (263*c^4*d^6*e^5 + 32*a*c^3*d^4*e^7 - 7*a^2*c^2*d^2*e^9)/(c^4*d^4*e^4))*x + (605*c^4*d^7*e^4 + 28
9*a*c^3*d^5*e^6 - 161*a^2*c^2*d^3*e^8 + 35*a^3*c*d*e^10)/(c^4*d^4*e^4))*x + (105*c^4*d^8*e^3 + 790*a*c^3*d^6*e
^5 - 896*a^2*c^2*d^4*e^7 + 490*a^3*c*d^2*e^9 - 105*a^4*e^11)/(c^4*d^4*e^4)) + 7/256*(c^5*d^10 - 5*a*c^4*d^8*e^
2 + 10*a^2*c^3*d^6*e^4 - 10*a^3*c^2*d^4*e^6 + 5*a^4*c*d^2*e^8 - a^5*e^10)*log(abs(-c*d^2 - a*e^2 - 2*sqrt(c*d*
e)*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))))/(sqrt(c*d*e)*c^4*d^4*e)

Mupad [F(-1)]

Timed out. \[ \int (d+e x)^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx=\int {\left (d+e\,x\right )}^3\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e} \,d x \]

[In]

int((d + e*x)^3*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2),x)

[Out]

int((d + e*x)^3*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2), x)